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Abstract—A wide amount of media in the internet is in the 

form of video files which have different formats and encodings. 

Easy identification and sorting of videos becomes a mammoth 

task if done manually. With an ever-increasing demand for video 

streaming and download, the Video Classification problem is 

brought into foresight for managing such large and unstructured 

data over the internet and locally. We present a solution for 

classifying videos into genres and locality by training a 

Convolutional Recurrent Neural Network. It involves feature 

extraction from video files in the form of frames and audio. The 

Neural Networks makes a suitable prediction. The final output 

layer will place the video in a certain genre. This problem could 

be applied to a vast number of applications including but not 

limited to search optimization, grouping, critic reviews, piracy 

detection, targeted advertisements, etc. We expect our fully 

trained model to identify, with acceptable accuracy, any video or 

video clip over the internet and thus eliminate the cumbersome 

problem of manual video classification. 
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I. INTRODUCTION 

By and large all techniques used in video classification 
have been image based, with little consideration going into the 
background audio and annotations. CNN-LSTMs [1] have 
shown great strides in recognizing image-based video inputs 
and classifying them into output categories. As humans though, 
we not only recognize a video by its visual features, but also by 
the perceived audio it generates. To teach a machine to take 
similar features into consideration would make a lot of sense 
because audio plays a large role in classifying videos too. For 
example, an action scene in a movie will have a fast-paced 
audio accompanying it, a serious dialogue session will have a 
lot of voices and weak music notes. Also, a lot of video shot in 
the internet could be amateurish, with blurry images and weird 
camera angles. 

Giving the context of audio will help the Neural Network 
more features to rely on while making a classification. 

To a human a video is a ray of different colors striking the 
eyes, but computers perceive video in a completely different 
way from us. At the lowest level, it is a series of 1’s and 0’s 
which makes no sense to the processor except to light up a 

certain pixel in certain color. When we teach a Neural Network 
to identify videos, we are asking it to identify certain patterns 
in those numbers based on mathematical calculations. An 
image, therefore may be viewed by a machine as in Fig. 1(a) 
and 1(b). 

The problem inherent in computer vision, in fact, the very 
purpose of the field, is to recover information about the world 
from sensory input. This can be thought about as a formula:  

S = f (W)              (1) 

 
(a) Information visible to a Machine in Gaussian Blur Format. 

 

Fig 1. (b): Information visible to a Machine in Bitmap Format. 
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Our sensory information(S) is a function of the world (W) 
around us (1). What humans take for granted, and what the 
field of Computer Vision struggles to make machines do, is the 
reverse: 

W = f -1(S)                (2) 

That is, to understand the world from sensory information 
(2). 

Audio is different scene altogether. A common way to 
input audio to Machine Learning algorithms is by using a Mel 
spectrogram. A mel-frequency cepstrum (MFC) is a 
representation of the short-term power spectrum of a sound, 
based on a linear cosine transform of a log power spectrum on 
a nonlinear mel scale of frequency. 

MFC coefficients are commonly derived as follows: 

1) Take the Fourier transform of (a windowed excerpt of) 

a signal. 

2) Map the powers of the spectrum obtained above onto 

the mel scale, using triangular overlapping windows. 

3) Take the logs of the powers at each of the mel 

frequencies. 

4) Take the discrete cosine transform of the list of mel log 

powers, as if it were a signal. 

5) The MFCCs are the amplitudes of the resulting 

spectrum. 

A popular formula to convert f  hertz into m mels is in 
Fig. 2. Fig. 3 shows the generated Mel spectrogram of an audio 
file using Audacity. 

Most state-of-the-art algorithms use this technique as a 
baseline for their inputs. Hence, we’ve chosen the same 
techniques for the inputs to our model. Combining the best of 
both audio and video classification techniques, we present a 
unique solution for the video genre classification problem 
using a Convolutional Recurrent Neural Network or a 
Convolutional Long Short-Term Memory Network. 

Convolutional Neural Networks have been the best at 
spatial feature extraction and classification problems for 
images. Some popular examples are ImageNet [2], MobileNet 
[3], Inception [3], and Google’s WaveNet [4]. Feature 
extraction from a single frame may be straightforward, 
however a video is a sequence of frames, and every frame is 
important. For example, we cannot recognize an action of say 
eating a bowl of cereal, until we have seen a person putting a 
spoon into the bowl and then into his mouth. Similarly, we 
must teach a machine to not only look at one frame, but a 
sequence of frames, to grasp the context of the video. The same 
analogy can be applied to audio. Hearing a single beat will not 
help us identify the genre of a song. Only when we hear it for a 
few seconds are we be able to identify its tempo, the 
instruments used and its theme. This is where Recurrent Neural 
Networks come into play. A recurrent neural network (RNN) is 
a class of artificial neural network where connections between 
nodes form a directed graph along a temporal sequence. So 
RNNs can not only understand features at a single timestep, but 
also remember features from previous timesteps, making them 
best suited for solving temporal region problems. Long short-
term memory (LSTM) [20] follow the RNN architecture and 
have shown great promise in the video classification problem. 

 

Fig 2. The Convolutional Neural Network Architecture. 

 

Fig 3. Simplified Representation of a Convolutional Neural Network and a Recurrent Neural Network. 
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The CNN output can be taken in two methods. One is we 
take the output from the SoftMax layer, which includes the 
predictions the CNN has made. The other method is to use the 
output from the pool layer, which leaves the output prediction 
to the RNN. We have tried both methods for this paper and 
they are explained in detail later. 

II. GENRE IN VIDEOS 

A genre for a video specifies a certain expectation about the 
video. Genres in real world videos are neither specific nor 
implicit but tend to be overlapping. Also, they vary from 
person to person as perspective matters. In such a case, 
defining specific boundaries for genres tends to become 
difficult. For example, there is a very thin line between the 
genres Drama and Thriller, and many film critics argue for the 
same. To define audio into genres has a different shortcoming. 
Audio Classification is usually multi-label, because they tend 
to be a mixture of multiple tastes and themes. Background 
music in modern movies tend to be a mixture of both classical 
and contemporary, two very different genres if seen separately. 
Period movies and biographies today are examples for the above. 

Therefore, to define the genres for a classifier, we must 
ensure that we remove the maximum conflicts that occur in 
genre identification. Hence, we have chosen 6 genres which we 
can safely say are non-overlapping and mutually exclusive, 
even if based on different perspectives. The genres we chose 
are: Action, Animation, Horror, Romance, Sports and Science 
Fiction. This ensures that our model does not form any tight 
assumptions about one genre and is also flexible and open for 
new genres in the future. 

III. RELATED WORK IN VIDEO CLASSIFICATION 

A. Truly Multi-modal YouTube-8M Video Classification with 

Video, Audio, and Text [5] 

Zhe Wang, Kingsley Kuan, Mathieu Ravaut and others[5] 
present a novel way in Video classification by using multi-
modal features from audio, video and text.Their algorithm 
classifies the YouTube 8M dataset, which is a collection of 
over 0.7 million YouTube videos , each labelled automatically, 
without human curation. The challenge involves classifying an 
imbalanced dataset based on user generated video content on 
YouTube. They used TextCNN for titles and Random Forest 
and max pooling for frame classification. Their research 
showed that the inclusion of text yielded state-of-the-art 
results, e.g. 86.7% GAP on the YouTube-8M-Text validation 
dataset. 

B. Large Scale Video Classification using both visual and 

audio Features on YouTube-8M Dataset [6] 

Emma An, Anqi Ji and Edward Ng. [6] presented a solution 
for the YouTube-8M challenge by considering both audio and 
video features. They used a Convolutional Neural Network to 
classify videos into their 4716 classes. Their model used a 
Mixture of experts (MoE) to receive 3 inputs, video level 
features only, audio level features only and a concatenation of 
both audio and video features. They applied a dense layer, 
followed by a rule activation layer in their model. Taking the 

softmax function output, they achieve an AvgHit of 0.84, Avg 
PERR (average precision at equal recall rate) of 0.709, and 
mAP (mean average precision) of 0.415 compared to the best 
performing baseline. 

C. Temporal 3D ConvNets: New Architecture and Transfer 

Learning for Video Classification [7] 

Ali Diba, Mohsen Fayyaz, Vivek Sharma and others [7] 
introduced new 3D convolutional neural network architectures 
for video classification named DenseNet3D and T3D.They 
introduced a new temporal layer that models variable temporal 
convolution kernel depths, embedding this new temporal layer 
in their proposed 3D CNN, thus extend the DenseNet 
architecture - which normally is 2D - with 3D filters and 
pooling kernels. Their research mainly dealt with action 
recognition in videos, using the Sports-1M, HMDB and 
UCF101 datasets. They beat algorithms trained in multi-GPU 
setup for days by removing bottlenecks in the knowledge 
gained by 2D ConvNets. 

D. Learning Representations from EEG with Deep Recurrent-

Convolutional Neural Networks [8] 

Pouya Bashivan, Irina Rish, M. Yeasin, and Noel Codella 
[8], applied Deep Recurrent-Convolutional Neural Networks in 
classifying electroencephalogram data. 
Electroencephalography (EEG) is an electrophysiological 
monitoring method to record electrical activity of the brain. It 
is typically non-invasive, with the electrodes placed along the 
scalp, although invasive electrodes are sometimes used, as in 
electrocorticography. EEG measures voltage fluctuations 
resulting from ionic current within the neurons of the brain. By 
training their model, they were successful in demonstrating 
significant improvements in classification accuracy over 
current state-of-the-art approaches in this field. A similar 
CNN-LSTM [21] is used in this paper. 

Although a hot topic in Computer Vision, surprisingly less 
research has been done in the category of genre identification 
in videos. Most of the state-of-the-art research has been done 
on image recognition and on solely visual features. The 
challenges posed for such a classification are noisy data, huge 
computational costs, large size of datasets and 
locality/copyright of videos. Some of the limitations of the 
above papers are: 

 They classify videos into categories of fixed actions, 
which are very specific. 

 Most researchers use the YouTube-8M [9] dataset, 
which is a highly imbalanced dataset and contains very 
generic categories. 

 They rely solely on visual features, ignoring a large 
amount of audio data. 

 They rarely consider temporal space, relying on only 
spatial features, which bottlenecks most classification 
attempts. 

Through this paper, we attempt to outline and demonstrate 
methods to improve video classification by fixing most of the 
limitation mentioned above. Our research is solely academic 
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and is meant to spark interest into the genre-classification 
problem and its current limitations. 

IV. DATA GATHERING 

There are certain limitations while using existing popular 
video datasets like YouTube-8M, HMDB [10], UCF101 [11] 
for genre identification problems, mainly because their labels 
are not categorized into movie genres. For examples categories 
like playing sports are placed into human actions, which should 
instead be classified into a sports genre by our model. Hence, 
we had to do a lot of manual data cleaning to get our training 
set. 

This paper presents the work which are used in parts or in 
their entirety as follows: 

 The UCF101 dataset 

 The Hollywood2 [12] dataset 

 The HMDB dataset 

 The YouTube-8M dataset 

We choose video from these pre-labelled datasets and 
classified them into folders representing our six genres. For 
example, videos of punching, fighting and explosions went into 
the action folder, cases of hauntings and paranormal scenes 
went into the horror folder and so on. For animation however, 
we had to take an entirely different approach since there is a 
dearth of freely available animation videos for research 
purposes on the internet. We resorted to manually downloading 
clips from public domain websites [13] [14]. 

Most of the animated videos found online were old hand-
drawn ones, but we were able to secure some modern 3D 
animation from the blender.org foundation and other open 
sources. 

The compiled dataset now consisted of 39GB of videos, 
each separated into folders whose names displayed their labels. 

V. DATA CLEANING AND PREPROCESSING 

A movie video file is usually run at a constant 24 frames 
per second. If we convert an entire video file into frames, we 
would get 24 images for a second, which when scaled for a 2-
minute video amounts to 2,880 frames. This data is a lot for a 
model to process and therefore we had to cut down on frame 
count by taking only 4 frames for each second. This limit was 
decided after a simple test conducted on human subjects. We 
split different videos into 2, 4, 6 and 8 frames per second and 
asked the subjects to cycle through the images and guess the 
action to be performed. We found that the human mind could 
perceive any action taking place optimally in 4 frames every 
second, where 2 would be difficult for slow actions and 6 and 8 
would be too easy to guess. Hence, we concluded that an 
average of 4 frames per second is enough information for a 
model to recognize what is going on in a frame of time as 
depicted in Fig. 4. The conversion of video to frames was done 
with the well-known library OpenCV2 [13] written in 
Python3.The frames were arranged in similar folders as the 
videos, with folder names specifying the label. 

 

Fig 4. A visualization of different Audio (WAV File) to Frequency Graph 

Conversion Techniques. 

For audio, we used the well-known codec FFMPEG [14]. It 
provides fast, efficient and lossless conversion of video files 
into wav files. Then each WAV file was converted into a mel 
Frequency Spectrogram using the Python 3 library matplotlib 
[15] and stored into a similar folder structure as above. 

Overfitting happens when the model fits too well to the 
training set. It then becomes difficult for the model to 
generalize to new examples that were not in the training set. 
For example, the model recognizes specific images in the 
training set instead of general patterns. The training accuracy 
will be higher than the accuracy on the validation/test set. To 
prevent overfitting, we needed regular validation checks as 
most of our dataset consisted of specific videos. Hence, we 
split the set into 80/10/10 for the training, testing and 
validation sets respectively. 

VI. THE CONVOLUTIONAL RECURRENT NEURAL NETWORK 

APPROACH 

A high-level architecture view of the model is shown in 
Fig. 3. Both audio and visual features were essentially treated 
as images, so they could be easily vectorized. This ensured us 
to categorize inputs easily as a TensorFlow/NumPy array to be 
given to the model. 

A. The Convolutional Neural Network 

Pouring research into the availability of state-of-the-art 
open-source CNNs like ImageNet, VGGNet [16], InceptionV3 
[19] and others, we were able to reduce the resource intensive 
and repetitive task of preparing a CNN model without a 
baseline. It would prove more time-consuming since we 
needed a network that was aware of what an image was first, 
before it could start finding patterns. Hence, we decided on 
training our dataset on the pre-created models as a baseline. 
Inception was selected as our base CNN due to its ability of 
transfer learning for new classes of data as well as better 
accuracy for home and amateur clips. The InceptionV3 is a 
neural network architecture for image classification, originally 
published by Christian Szegedy [19], Vincent Vanhoucke, 
Sergey Ioffe, Jonathon Shlens, Zbigniew Wojna[17]. This 
model has already been trained on a similar task for thousands 
of images and thus comes with an intuition for feature 
extraction from images. 
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The input to this layer comes in the form of images of size 
225 x 225 x 3(width x height x channels) which are scaled 
accordingly using NumPy [18]. 

We train the session for a total of 4000 steps with the 
default hyper-parameters. Training checkpoints are created 
every 400 steps. The output will give us a retrained graph in pb 
format and a text file containing labels. However, we are more 
interested in the output of the pool and softmax layers. The 
layer output was taken accordingly in code and then passed on 
to the RNN. The reason why softmax is useful is because it 
converts the output of the last layer in the neural network into 
what is essentially a probability distribution. This gives the 
RNN more data to work with rather than a single 2048 vector 
and a class label. The advantage here is that instead of just 
getting a predefined label as output, we are giving our next 
iteration the entire data that led to its prediction of a particular 
label. At the end of this process we have both the vector arrays 
containing the features as well as the prediction probability of 
each class label for that vector. 

B. The Recurrent Neural Network 

We could choose to build our RNN either as a deeper 
network or as a wider network. Testing with both options, we 
discovered better training results while using a wider network. 
Another way to think about RNNs is that they have a 
“memory” which captures information about what has been 
calculated so far. In theory RNNs can make use of information 
in arbitrarily long sequences, but in practice they are limited to 
looking back only a few steps. The RNN-LSTM [21] has 2 
main layers, viz. LSTM layer and the regression layer. The 
LSTM layer provides the temporal feature extraction that we 
need for the video. Denoting ∗ as elementwise multiplication 
and ignore bias term, LSTM calculates a hidden state ht as: 

it=σ(xtUi+ht−1Wi) 

ft=σ(xtUf+ht−1Wf) 

ot=σ(xtUo+ht−1Wo) 

~Ct=tanh(xtUg+ht−1Wg) 

Ct=σ(ft∗Ct−1+it∗~Ct) 

ht=tanh(Ct)∗ot              (3) 

Here, i, f, o are called the input, forget and output gates, 
respectively. These gates have the exact same equations, just 
with different parameter matrices (W is the recurrent 
connection at the previous hidden layer and current hidden 
layer, U is the weight matrix connecting the inputs to the 
current hidden layer). They are called gates because the 
sigmoid function squashes the values of these vectors between 
0 and 1, and by multiplying them element wise with another 
vector it defines the part of the other vector that is allowed to 
the next layer. The input gate defines how much of the newly 
computed state for the current input you want to allow to the 
next layer. The forget gate defines how much of the previous 
state you want to allow to the next layer. Finally, the output 
gate defines how much of the internal state you want to expose 
to the external network (higher layers and the next time step). 
All the gates have the same dimensions dh, the size of your 

hidden state. ~C is a candidate hidden state that is computed 
based on the current input and the previous hidden state. C is 
the internal memory of the unit. It is a combination of the 
previous memory, multiplied by the forget gate, and the newly 
computed hidden state, multiplied by the input gate. Thus, 
intuitively it is a combination of how we want to combine 
previous memory and the new input. We could choose to 
ignore the old memory completely (forget gate all 0’s) or 
ignore the newly computed state completely (input gate all 
0’s), but most likely we want something in between these two 
extremes. ht is output hidden state, computed by multiplying 
the memory with the output gate. Not all of the internal 
memory may be relevant to the hidden state used by other units 
in the network. 

That sequential information is preserved in the recurrent 
network’s hidden state, which manages to span many time 
steps as it cascades forward to affect the processing of each 
new example. It is finding correlations between events 
separated by many moments, and these correlations are called 
“long-term dependencies”, because an event downstream in 
time depends upon, and is a function of, one or more events 
that came before. Mathematically, the carrying forward of 
memory is represented as: 

ht=φ(Wxt + Uht-1)              (4) 

The hidden state at time step t is h_t. It is a function of the 

input at the same time step x_t, modified by a weight matrix W 
(like the one we used for feedforward nets) added to the hidden 

state of the previous time step h_t-1 multiplied by its own 

hidden-state-to-hidden-state matrix U, otherwise known as a 

transition matrix and similar to a Markov chain. The weight 
matrices are filters that determine how much importance to 
accord to both the present input and the past hidden state. The 
error they generate will return via backpropagation and be used 
to adjust their weights until error can’t go any lower. 

From the output of the CNN, we group the vector 
sequences into 40 frames, giving us 10 seconds of information 
to process. The RNN has 2056 nodes and gives the output as 
the six classes with their probabilities. The label with the most 
probability assumed as the predicted class for the current frame 
sequence. Fig. 5 shows the architecture of our RNN. 

 

Fig 5. The Recurrent Neural Network Architecture and Layers. 
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VII. TRAINING SPECIFICATIONS 

Training video classifiers require tremendous hardware 
capabilities due to the size and structure of data. We decided to 
use the Google Cloud Platform for training our model. A Deep 
Learning AMI by Google was deployed on the platform and 
its’ specifications were: 

 4x Intel XEON vCPUs 

 1x NVIDIA Tesla K80 with 12GB VRAM 

 10GB of RAM 

 100GB of fast SSD 

 Debian OS 

This provided us a fast, reliable, on-the-go and cost-
effective solution for cloud training. 

VIII. EXPERIMENTAL RESULTS 

With the dataset and model ready, the training took us 4 
hours for the CNN part and 4 hours for the RNN part, running 
on the machine specified above. 

The accuracy mark when we used the output from the 
softmax layer method, that is taking the output from the second 
layer, yielded 85.4%. This method gave raw data from CNN to 
the RNN, hence the RNN had an upper hand in making a 
decision. The TensorFlow log is attached in Fig. 6. 

To further improve this, we used the pool layer method 
which took output from the third layer. This gave more 
computational power to the CNN and the predictions were 
narrowed down. This brought the accuracy mark up to 90.3%. 

We then tested the model on completely unknown videos 
from the internet. They consisted of movies, science fiction 
documentaries, live sport matches and TV series. Our 
algorithm was able to safely classify videos by observing the 
temporal space in most of the cases. The shortcomings are 
discussed later. 

To set a benchmark for our method, we trained the naïve 
model on the UCF101 dataset. The model was able to beat the 
average accuracy benchmark set on the dataset after just 3 
hours of training. Table I lists the comparison of accuracies for 
different Video Classification methods applied on the dataset. 

TABLE I. A COMPARISON OF VARIOUS VIDEO CLASSIFICATION 

TECHNIQUES USED IN THE PAPER 

Sno Name Accuracy 

1 ConvNet[22] 65% 

2 Time distributed CNN [23] 41% 

3 3D convolutional Network[24] 52.8% 

4 CNN-RNN 74% 

5 CNN-LSTM – soft-max 85.4% 

6 CNN-LSTM – pool 90.3% 

 

 

Fig 6. Tensor board Training Graphs for the CNN-LSTM Network. 
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IX. CONCLUSION AND FUTURE ENHANCEMENTS 

Video classification is a long open problem with 
tremendous possibilities for applications in the fields of 
medicine, entertainment, surveillance, search optimization and 
many others. Using only visual features has inputs leave a lot 
of gap for the classification methods to fill. By using audio 
features, we aim to fill this gap and also make a machine more 
intelligent while dealing with data. Video files take up a huge 
chunk of data stored on the internet and easy classification will 
always be a prime problem to be solved. The lack of proper 
datasets, copyright issues, video quality, etc. will always 
continue to be bottlenecks in the way of this problem. 
However, as more open-source research is made into this field, 
we can expect to see more efficient methods emerge which are 
not so computationally expensive. Our paper highlights the 
main shortcomings many video classifiers are plagued with, 
namely in using audio features and in the temporal space. 
Computer vision is and will be a booming field in the years to 
come as we move to autonomous machines and robots. Video 
feeds are the best input we can give to these intelligent 
machines. 

However, there is still a long way to go before we can 
completely trust machines to make prediction on genres. In our 
testing we found two interesting cases where the model 
classified a certain genre wrong. In the first case; the input 
video we gave was from a horror movie, where a ghost is 
walking vertically on a tree trunk. The model continued to 
classify the video as action despite there being clear elements 
of horror present in the scene. Another case is highlighted in 
the genre of Romance, where due to the lack of lighting and the 
expressions of the actress, the model thinks the genre is horror. 
Such false classifications will always arrive as long as 
machines are ignorant about a lot of other features like human 
emotions and the technicalities involved in the direction of a 
movie. To bridge this gap would be a major step in building an 
AI critic, who could not only classify movies, but also judge 
their effectiveness and themes. 

Every project is at any stage a work in progress, since we 
cannot achieve a perfect system. The scope for its future 
enhancement rests on the shoulders of its creators. Our work in 
this field will continue to grow and we have a roadmap for 
adding more features to this classifier. Some of our planned 
enhancements are: 

 Subtitle and transcript generation 

 Changing video speed based on the action going on  

 Vocal narration for disabled 

 Large Curations and Sorting of videos 

 Medical Video Analysis. 
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