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 Abstract: Background: Crop diseases are a primary hazard to nutrient safety, which proves to be a 

serious problem in many places in the world due to the unavailability of essential aid. Typically ag-

riculturalists or specialists perceive the plants with a naked eye for detection and identification of 

an illness. Machine vision models, in specific Convolutional Neural Networks (CNNs) have di-

rected an impact in feature extraction to a greater extent. Since 2015, numerous solicitations for the 

automatic classification and recognition of crop illnesses have been established.  

Methods: In this paper, we proposed, analyzed, and assessed various state-of-the-art models pro-

posed over a decade. These models are pre-trained with the finest parameters where we modeled a 

design-oriented method with numerous leaf-images and classified them into infection and healthy 

class for each type of leaf independently.  

Results: Through our examination, we concluded that VGG models stand-alone with many cited 

prototypes and give on par results. As declared, these VGG models (VGG16 and VGG19) are uti-

lized for feature extraction, and further, we augmented a set of dense layers and train them conse-

quently for classification. The performances of various machine vision prototypes were pictorially 

perceived and their sophisticated architecture is not only capable of extracting detailed features but 

also repressed many loop-holes. The performance is assessed and computed for several types of leaf 

images and the accuracy scores attained were more than 97.5% for VGG16 and 96.72% for VGG19.  

Conclusion: AUC-ROC curves were portrayed to illustrate its inspiration in defining an accurate 

classification where VGG16 and VGG19 have at least 96.6% and 95% area under the curve (AUC) 

which resembles their robustness. 
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1. INTRODUCTION 

The trick of competent plant disease fortification is care-
fully connected to the difficulties of supportable cultivation 
and weather variation. Investigation outcomes designate that 
weather variation can change phases and amounts of patho-
gen improvement; it can also change host confrontation, 
which leads to physiological variations of host-pathogen 
connections. The condition is more difficult by the fact that 
today; diseases are increasing globally. New diseases can 
transpire in places where they were formerly unknown, 
where there is no native ability to find proper medication. 

 

*Address correspondence to this author at the Department of Information 
Technology, VNR Vignana Jyothi Institute of Engineering and Technology, 
Hyderabad, India; Tel: 0423042761; E-mail: dammavalam2@gmail.com 

 Cultivation has a huge impact on the production of food, 
especially with the increasing population. The plant diseases 
are intimidating the yield of the crop. Plant diseases can have 
a major impact on decreasing crop production in farming and 
forestry. Initial discovery and identification of plant diseases 
oblige to take suitable actions. 

There are numerous methods to identify plant patholo-
gies. Some diseases do not have any noticeable indications 
related, or appear only when it is too late to act. In these cir-
cumstances, it is essential to accomplish refined examina-
tion, typically by resources of influential microscopes. In 
some circumstances, the marks can only be perceived in por-
tions of the electromagnetic band that are not obvious to the 
naked eye. 
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In this varying environment, suitable and well-timed dis-
ease identification comprising initial prevention is not signif-
icant. There are numerous techniques to identify plant pa-
thologies. Some diseases do not have any perceptible indica-
tions and in those circumstances, a refined examination is 
compulsory. Conversely, maximum diseases produce some 
kind of appearance in the perceptible spectrum. In this condi-
tion, they can be discovered with the naked eye inspection of 
a skilled expert. To accomplish precise plant disease diag-
nostics, a plant pathologist should have respectable observa-
tional abilities to recognize distinctive indications. 

Overcoming such problems can either be done by a pro-
fessional plant pathologist or a person who belongs to that 
field of expertise. However, with the help of AI, we can de-
tect and diagnose by developing models with expert preci-
sion which can be useful to common people. Introducing AI 
to detect and classify various plant diseases has been utilized 
for the past decades. In this research, an efficient solution is 
provided by classifying and detecting if the plant is either 
infected or healthy by considering leaf image as input. The 
flow diagram is depicted in Fig (1). 

2. PREVIOUS WORKS 

2.1. Before Evolution of ConvNets 

Researches before the evolution of ConvNets applied 
machine learning handcrafted methods for automated diag-
nosis of plant diseases that had high pre-processing mecha-
nisms. Camargo et al., (2009) [1] considered cotton crops 

with few samples and analyzed properties of cotton crop 
images such as shape, texture, fractal-dimensions, etc. They 
considered such properties as features (45 features) and at-
tained the highest accuracy of 93.1%. Rumpf et al., (2010) 
[2] performed 3 variant tasks a) classifying healthy and in-
fected sugar-beet leaves (binary classification). b) Spotting 
various diseases in Cercospora infecting beet-sugar leaves 
(multi-class classification). And c) Finally, identifying the 
disease even before the visual occurrence of symptoms for 
performing the classification tasks. They used SVM which 
attained a high accuracy of 97% for binary classification and 
86% for multi-class classification. Al Bashish et al., (2010) 
[3] developed a diagnostic model for detection and classifi-
cation of the plant leaf stem, where they designed four-phase 
learning for the model to leverage its performance. In the 
first phase, they captured a significant colored part of the leaf 
by thresholding to capture mostly the greener pixels of the 
image. In the next step, they mask this greener pixel. Subse-
quently, the boundaries containing infected clustered objects 
are removed. Now, this fully pre-processed data is sent to a 
pre-trained neural network which classifies 6 classes (5 are 
infected and 1 is healthy) with 92.7% accuracy. Inspiring 
from the previous study, Al-Hiary et al., (2011) [4] devel-
oped a software solution for automated diagnosis of plant 
leaf in which classification is done with a precision lying 
between 83-94%. They additionally achieved a 20% speed-
up compared to that of the previous approach [5]. Ariva-
zhagan et al., (2013) [6] considered a few samples of various 
leaf images (<1k) and classified them with SVM to attain an 
accuracy of 87.66%. 

 

Fig. (1). In the above figure, we consider all the input leaf images of various plants as described in Table (1). In the First Block (Input) we 
send different sets of images (healthy and infected) of various leaf-kinds. In feature extraction block with the help of various state-of-the-
vision models as mentioned in Table (2) and generate a feature vector. Next, these feature vectors are fed to a classifier, a Fully-connected-
Neural-Network (FCN), and classify the input images as healthy(H) or Infected(I) with individual probabilities. Now we select an Optimal 
model which generalizes for all sets of leaf-kinds. During this experimentation, it was found that VGG models tend to perform extravagantly 
by overcoming various pitfalls. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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We observed that most of the researchers performed 
heavy-tailed pre-processing on leaf images to build an accu-
rate model but, these handcrafted former methods are con-
sidered to be hyperparameters which are to be tuned careful-
ly and this decreases model versatility. This problem of 
handcrafted pre-processing can be overcome by the latest 
advancements in computer vision using deep learning tech-
niques. 

2.2. After Evolution of ConvNets 

There was much advancement in classification and 
recognition of plant leaf images after the revival of Con-
vNets. Many researchers developed deep models either by 
training input data or by sharing weights of pre-trained mod-
els to reduce computational complexity and share the effica-
cy of model performance. This led to insightful results both 
in terms of performance and efficiency. Sladojevic et al., 
(2016) [7] developed a deep model for recognition of 13 
different kinds of plant leaf images and attained a precision 
between 91-98% and on an average, the precision was 96.3% 
and additionally, they stated augmentation improved perfor-
mance of the model gradually per epoch. Mohanty et al., 
(2016) [8] evaluated the model with trained and pre-trained 
AlexNet [9] and GoogleNet [10] models by identifying 14 
distinct crops with 26 varying diseases. For a greater gener-
alization, they varied test samples from 20-80% and they 
attained the highest accuracy score of 99.35% for a pre-
trained model. Singh et al., (2017) [11] used an algorithm for 
image segmentation and further automated detection and 
classification were done using ConvNets. They were able to 
classify 5 leaf disease classes with an average accuracy of 
97.6%. Amara et al., (2017) [12] designed fully connected 
ConvNets for feature extraction and fully connected dense 
layers to classify banana colored and grey-scaled images. 
They have inspired from [13] and performed various test sets 
for a good generalization. Test sets were varied from 20-80% 
and attained the highest accuracy for 99.72% colored banana 
leaves with 50% test samples and 97.57 for grey-scaled im-
ages with 40% test samples. Petrellis et al., (2017) [14] de-
veloped a mobile app for the diagnosis of plant diseases 
based on attributes of color, shape, previous weather data, 
etc. Classification and detection of disease constricted with 
few samples with an accuracy score of 90% (individual accu-
racy scores were above 85%). Brahimi et al., (2017) [15] 
classified nine different infected classes of tomato leaves 
using ConvNets (inspired architecture from AlexNet and 
GoogleNet) and attained an accuracy score of 99.18%. They 
also compared machine learning models (Random Forest and 
SVM) with Convnets to show the efficiency of deep pre-
trained ConvNets. 

Oppenheim et al., (2017) [16] classified 4 diseased and 1 
healthy class of potato leaves with very little sample (approx. 
1k) and generalization was carried out with train-test meth-
odology on various test sample sets, i.e. varied from 0.1 to 
0.9, during experimentation they attained high accuracy of 
95.85% for 0.1 test size and least accuracy of 83.21 for 0.9 
test size. Fuentes et al., (2017) [17] developed a disease and 
pest recognition model for tomato plant leaves by collecting 
data using a phone camera. This model is an ensemble of 
various state-of-the-art detection models, i.e Faster-RCNN, 
R-FCN, and SSD for deep meta-ensemble learning. In this 

model, they used ResNet and VGG as feature extractors 
which eventually led to greater performance. Al Bashish et 
al.,(2018) [18] evaluated the performance of deep neural 
networks in plant pathology by considering 21 distinct plants 
and 171 diseases of which plants are affected. They addi-
tionally investigated the challenges and factors influencing 
the use of deep-vision models in plant pathology either to 
classify or detect diseases. Prajwala et al., (2018) [19] devel-
oped a unified model inspired by the architecture of LeNet 
which classifies tomato leaves and its infection kind with 
middling accuracy of 94-95%. Wang-Su.J et al.,(2018) [20] 
inspired by the architecture of GoogleNet proposed a model 
that classifies and detects infection from healthy leaves [21]. 
This model attains classification accuracy between 99.6-
99.8% and the recognition rate was more than 94% even if a 
large part of the leaf (30%) got damaged. Serawork. W et al., 
[22] used LeNet architecture for soybean-plant disease clas-
sification with an adequate sample size (13k) for 4 infection 
classes. They have shown that their accuracy score was im-
proved with the use of regularization techniques (Dropout 
and Data Augmentation) to a good extent and attaining the 
highest accuracy score of 99.32% by overcoming the draw-
back of data imbalance.  

It is observed that most of the researchers obtained great-
er performance for deep-vision models due to the fact of 
shared weight mechanisms in deeper networks and using 
deep vision models overcame the major problem of hand-
crafted pre-processing techniques. Most of the research pro-
posed has either done classification or detection for i) A sin-
gle plant-leaf ii) Multiple leaves all combined iii) or classify-
ing only disease classes of the leaf. In this research, we pro-
pose a strategy of classifying infected and healthy plant leaf 
by developing a model that fits that specific plant leaf kind. 
Such models are tuned carefully to attain higher efficiency 
and versatility.  

3. METHODOLOGY 

3.1. Models Description 

The success rate of deep learning is consistently growing 
in various domains like computer vision(CV) [23-27], com-
plex networks [28-30] and Natural Language Processing 
(NLP) [31, 32]. In computer vision, the visual recognition 
challenge ILSVRC [33] shed a light on deep learning 
frameworks. The success rate in classification has outra-
geously increased with the evolution of Convolution Neural 
Networks. The first victorious attempt in developing deep 
convolutional neural networks was AlexNet. Thereafter re-
searchers proposed state-of-the-art methods over a decade. 
Researchers evaluated their models progressively by intensi-
fying the depth of the network and redesigning networks to 
overhaul existing models (Fig 2). Various models were pro-
posed to improve the ability to recognize patterns and grasp 
them substantially. In Table (2), we observed that with a 
periodic increase in depth of the network the parameters in-
crease heavily. These parameters boost the computational 
cost which in turn increases training time. To overcome such 
a cost increment in models, we imply the method of transfer 
learning [34]. Transfer learning has been implemented in 
recent advancements [35-38]. In transfer learning, the prima-
ry focus is on preserving the weights of profound layers of 
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Table 1. Various crop images taken for experimentation [source https://www.kaggle.com/vipoooool/new-plant-diseases-dataset]. 

Leafs Kinds Classes Infected Sub-Classes No of images 
No of Images in Healthy &  

Infection Class 

Apple 
Infection 

scab 630 

1526 (48.12%) black rot 621 

cedar apple 275 

Healthy * 1645 1645 (51.86%) 

Cherry 
Infection Powdery mildew 1052 1052 (55.2%) 

Healthy * 854 854 (44.8%) 

Corn 
Infection 

Cercospora leaf spot 513 

2690(69.8%) Common rust 1192 

Northern Leaf Blight 985 

Healthy * 1162 1162(30.2%) 

Grape 
Infection 

Black rot 1180 

3639(89.5%) Leaf blight 1076 

Esca 1383 

Healthy * 423 423(10.5%) 

Peach 
Infection Bacterial spot 2297 2297(86.4%) 

Healthy * 360 360(13.6%) 

Pepper 
Infection Bacterial spot 997 997(40.2%) 

Healthy * 1478 1478(59.8%) 

Potato 
Infection 

Early Blight 1000 
2000(92.9%) 

Late Blight 1000 

Healthy * 152 152(7.1%) 

Strawberry 
Infection Leaf Scorch 1109 1109(70.9%) 

Healthy * 456 456(29.1%) 

Tomato 
Infection 

Bacterial Spot 2127 

16569(91.2%) 

Early blight 1000 

Late Blight 1909 

Leaf Mold 952 

Septoria leaf spot 1771 

Target spot 1404 

Mosiac Virus 373 

Yellow leaf curl virus 5357 

Spider mites 1676 

Healthy * 1591 1591(8.8%) 

Blueberry** Heathy * 1502 1502(100%) 

Orange** Healthy * 5507 5507(100%) 

Raspberry** Healthy * 371 371(100%) 

Soybeans** Healthy * 5090 5090(100%) 

Squash** Infection Powdery Mildew 1835 1835(100%) 

[* - Represents the Healthy class without any Infection in that particular Leaf kind]; [**- Represents the Absence of either a Healthy or Infection class in that particular Leaf Kind]. 
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Fig. (2). Methodology for classification through VGG-16 and VGG-19 models. (A higher resolution / colour version of this figure is availa-
ble in the electronic copy of the article). 

the humongous network which helps in modeling an analo-
gous problem statement. The mentioned models in Table (2) 
are high performance deep neural networks with intense pat-
tern recognition capability in the domain of computer vision. 
These models are trained on images posed on ILSVRC. The 
primacy of transfer learning is they provide high throughput 
in performance by reducing the effort of fine-tuning with 
elegant feature extraction capability, in turn, reducing the 
performance cost i.e. training time. By the means of transfer 
learning methodology, these pre-trained neural networks are 
implied to analyze the performance of these methods on the 
Plant-Village database [39] and classify each crop for their 
healthy and infected classes and complete data information is 
tabulated (refer Table (1)). Understanding each model pre-
cisely over various crops helps us to determine the stellar 
model that can be used at a generic circumstance. 

AlexNet gave a good intuition for understanding Con-
vNets as it has high parameters for a lower depth and did not 
give effective learning compared to existing methods. After 
these various benchmark networks, some other methods [40-
42] were proposed with increasing depth and contrast in 
network architecture. This evolution is due to the change in 
depth of network usage of different receptive fields for con-
volution and varying design in architectures [43, 44]. There-
fore, the advancement from AlexNet to GoogleNet is an ele-
gant construct of network architecture. Next in VGG, we 
have small receptive fields (3x3, 5x5) for capturing low-level 
features; Larger receptive fields (7x7, 9x9) are used in 
AlexNet which are obliged to capture heavy-tailed features. 
Henceforth, we started with emerging and potential neural 
networks VGG Nets [45], ResNets [46, 47], DenseNet [48], 
MobileNet [49, 50] and Xception [51], which have been 
state-of-the-art models over the subsequent years in 
ILSVRC. As in VGG, the researchers have used a small re-
ceptive field with variation in size (5x5, 3x3). In some cases, 
they have used a minute receptive field which helps in the 

exact reconstruction of image passing on to successive layers 
which are inspired by NiN [52]. This improved classification 
performance helped in deducing error rate to that of Goog-
leNet. Next ResNet team came up with a novel methodology 
of weight sharing through sharable receptive fields in deep 
networks to overcome the hurdle of vanishing gradient. They 
have used an identity mapping mechanism for shortcut con-
nection a.k.a skip connections for greater depth of layers 
which further improved classification performance by a drop 
in error rate to a good extent. DenseNets, Xception, Mo-
bileNets came into picture soon after the research for Res-
Nets was done. The Xception network explicitly collates the 
performance and shows the pitfalls of GoogleNet, enhances 
the network by redesigning the Inception module which ele-
vates performance by lessening computational cost. Dense-
Nets presented various forms of deeper architectures that 
were densely connected with vast shared layers among them. 
The DenseNets architecture was divided into 2 major blocks 
named Dense Block and Transition Block, where Dense 
Blocks helped in understanding the intricate features itera-
tively. For a proper assessment of the model, we evaluated 
every metric in a detailed fashion. Now using these state-of-
the-art models we extract precise patterns by discussing in 
detail the pros and stumbling blocks of every selective mod-
el. Further, these models have high efficacy towards compu-
tational balance and error moderation simultaneously. Deep 
learning enhancement at various levels has been understood 
and an unaltered intuition is explained [53-55]. 

Table (2) describes the models which we used even with 
their updated versions. The conv + pooling layers describe 
the models that are pre-trained and used as feature extractors. 
Dense layers help to construct a classifier, and we trained 
them. Individual model performance is captured and evaluat-
ed with the metrics mentioned in Table (3). The first dense 
layer consists of 512 Neurons and subsequently, this feed is 
forwarded to the next layer with ReLU [56] as activation. 
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Table 2. Models taken for experimentation. 

Models Conv+pooling 

Layers 
Dense Layers Total Layers Non-Trainable 

Parameters 
Trainable Param-

eters 
Total Parame-

ters 

VGG16 16+1* 2 19 17.7M 0.2M 17.9M 

VGG19 19+1* 2 22 20M 0.2M 20.2 

ResNet50 50+1* 2 53 23M 1M 24M 

DenseNet-121 121+1* 2 124 7M 0.5M 7.5M 

Xception 126+1* 2 129 20.8M 1M 21.8M 

MobileNetV2 88+1* 2 92 2.2M 0.6M 2.8M 

MobileNet 88+1* 2 92 3.2M 0.5M 3.7M 

ResNet101 101+1* 2 103 42M 1M 43M 

ResNet50V2 50+1* 2 52 23.5M 1M 24.5M 

ResNet101V2 101+1* 2 103 42.6M 1M 43.6M 

DenseNet169 169+1* 2 171 18.3M 0.9M 19.2M 

DenseNet201 201+1* 2 203 12.4M 0.8M 13.4M 
[*- Represents we have done Global max pooling at the terminal layer of the network and fed feed to subsequent dense layers]. 

Next, 2 Neurons are assigned to return the feed as proba-
bilities of the healthy and infection class with softmax [57] 
activation. In this process of feature extraction from meth-
ods, we have not used any computation over the stacked 
deep layers(convolution and pooling) as they are pre-trained 
models assigned with balanced weights upon them. Now 
Global Max Pooling is performed [58, 59] after the feature 
extraction process which unravels to a linear layer. Now the 
attached two Dense Layers are trained and parameters that 
are generated are not more than 1M which eventually reduc-
es the effort of the training. 

3.2. Train-test & Metrics 

i) Train-Test 
As it is computationally expensive to test through K-

Fold, in deep learning train-and-test strategy is used. Before 
splitting data into train and test segments, we pre-processed 
it by resizing isotopically to 224x224x3. No further prepro-
cessing was done. Next, we conventionally divided the com-
plete data into training and testing sets randomly (with a 
fixed mixture). Training consists of 80% and testing consists 
of 20%. During training, we sent samples of a batch of 16. 
The use of appropriate batch size would lead to faster con-
vergence for smaller learning rates (1E-2) for the specified 
optimizer [60, 61]. As we do not conduct large training, we 
train our dense networks with the TensorFlow [62] platform 
where weights are updated through an optimized version of 
backpropagation [63-65]. The models are trained for 10 
epochs and used Adam [66] as an optimizer by assigning 
learning as 0.001. We did not use any regularization such as 
batch normalization [67] and dropout [68] as we are con-
strained with pre-trained weights. Categorical cross-entropy 
is used as our loss function. As sigmoid results in probability 
for a binary classification problem, we want to evaluate 
model performance deliberately with all possible metrics for 

individual classes and this is done by choosing softmax as 
non-linear activation.  
ii) Metrics 

A collection of metrics is chosen to evaluate the perfor-
mance and to avail of the underlying purpose of using them. 
These are some of the classification metrics widely used and 
have a significant role in proper judgment analysis for the 
models. Most of the classification metrics are derived from 
the confusion matrix. Generally, the confusion matrix gener-
ates a complete description of exactly and incorrectly classi-
fied instances for a given label descriptor. 

Accuracy: It is a generic metric which gives proper in-
tuition of how well the instances are classified, i.e. correct-
ness of instances as: 

�������� �
�� � ��

�� � �� � �� � ��
 

Precision: This tells about the correctly classified class 
labels to the aggregation of correctly and Incorrectly classi-
fied instances. 

�����	��� �
��

�� � ��
 

Recall(Sensitivity): This describes the correctly classi-
fied class label to that of all the classified labels belongs to 
that class. 

������ �
��

�� � ��
 

F1-Score: This describes the weighted aggregate of both 
precision and recall. 
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Table 3. Comparison of various models utilized in the proposed methodology for various crops. 

Apple 

  Base Metrics Precision Recall F1-Score 

Models Accuracy* MSE* Loss* Healthy Infection Healthy Infection Healthy 
Infec-

tion 

Vgg-16 0.9748 2.31E-07 0.3928 0.99 0.96 0.96 0.99 0.98 0.97 

Vgg-19 0.9764 0.0218 0.2185 0.98 0.97 0.98 0.98 0.98 0.98 

ResNet-50 0.9795 0.0167 0.0695 0.96 1 1 0.96 0.98 0.98 

DenseNet-121 0.7858 0.1743 0.8612 0.85 0.74 0.72 0.86 0.78 0.79 

Xception 0.5921 0.3886 6.6731 0.58 0.61 0.75 0.42 0.66 0.5 

MobileNet-224 0.674 0.2335 0.7508 0.62 0.93 0.98 0.35 0.76 0.51 

MobineNet-96 0.4252 0.36649 1.0343 0.46 0.35 0.61 0.23 0.52 0.28 

ResNet-101 0.9433 0.0504 0.2632 0.9 1 1 0.89 0.95 0.94 

ResNet-50[V2] 0.4803 0.5197 112.94 0 0.48 0 1 0 0.65 

ResNet-101[V2] 0.5197 0.4803 163.39 0.52 0 1 0 0.68 0 

DenseNet-169 0.7638 0.1884 0.7744 0.71 0.86 0.91 0.61 0.8 0.71 

DenseNet-201 0.5717 0.3977 3.1769 0.63 0.54 0.43 0.72 0.51 0.62 

          

Cherry 

  Base Metrics Precision Recall F1-Score 

Models Accuracy* MSE* Loss* Healthy Infection Healthy Infection Healthy 
Infec-

tion 

Vgg-16 0.9895 0.0105 0.1517 1 0.98 0.98 1 0.99 0.99 

Vgg-19 0.9764 1.43E-03 0.2185 0.98 0.97 0.98 0.98 0.98 0.98 

ResNet-50 0.5707 0.371027 1.64 0.52 1 1 0.19 0.69 0.32 

DenseNet-121 0.5602 0.4185 3.6087 0.82 0.55 0.08 0.99 0.14 0.7 

Xception  0.4581 0.5394 38.3264 0.46 0 0.98 0 0.63 0 

MobileNet-224 0.5026 0.4297 1.6376 0.49 1 1 0.06 0.65 0.12 

MobineNet-96 0.5314 0.449681 1.8839 0 0.53 0 1 0 0.69 

ResNet-101 0.8953 0.083 0.4181 0.82 1 1 0.8 0.9 0.89 

ResNet-50[V2] 0.5314 0.4686 87.0492 0 0.53 0 1 0 0.69 

ResNet-101[V2] 0.4686 0.5314 392.7 0.47 0 1 0 0.64 0 

DenseNet-169 0.555 0.4082 2.5325 0.62 0.55 0.13 0.93 0.22 0.69 

DenseNet-201 0.8429 0.1403 1.3135 0.98 0.78 0.68 0.99 0.8 0.87 

          
(Table 3) contd… 
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Corn 

  Base Metrics Precision Recall F1-Score 

Models Accuracy* MSE* Loss* Healthy Infection Healthy Infection Healthy 
Infec-

tion 

Vgg-16 0.9961 3.93E-09 0.1007 1 1 0.99 1 0.99 1 

Vgg-19 0.9974 2.62E-11 0.0594 1 1 1 1 1 1 

ResNet-50 0.9987 9.90E-04 0.004 1 1 1 1 1 1 

DenseNet-121 0.6706 0.019 11.7568 1 0.67 0 1 0.01 0.8 

Xception  0.5694 0.421 12.1214 0.41 0.76 0.67 0.52 0.51 0.62 

MobileNet-224 0.6887 0.243 0.8206 0.52 1 1 0.53 0.68 0.7 

MobineNet-96 0.8638 0.0937 0.2907 0.72 0.99 0.98 0.81 0.83 0.89 

ResNet-101 0.9507 0.0407 0.2076 0.87 1 1 0.93 0.93 0.96 

ResNet-50[V2] 0.6693 0.0263 78.554 0 0.67 0 1 0 0.8 

ResNet-101[V2] 0.6693 0.3307 158.76 0 0.67 0 1 0 0.8 

DenseNet-169 0.6706 0.3271 5.5298 1 0.67 0 1 0.01 0.8 

DenseNet-201 0.7471 0.2313 2.2658 0.69 0.76 0.44 0.9 0.53 0.83 

          

Grape 

  Base Metrics Precision Recall F1-Score 

Models Accuracy* MSE* Loss* Healthy Infection Healthy Infection Healthy 
Infec-

tion 

Vgg-16 0.9975 2.56E-10 0.0399 0.99 1 0.99 1 0.99 1 

Vgg-19 0.9988 0.0013 0.0234 1 1 0.99 1 0.99 1 

ResNet-50 0.9779 1.70E-06 0.0538 0.83 1 1 0.98 0.9 0.99 

DenseNet-121 0.8991 0.0975 1.2671 0.71 0.9 0.06 1 0.11 0.95 

Xception  0.8954 8.02E-04 22.0678 0 0.9 0 1 0 0.94 

MobileNet-224 0.4157 0.43422 1.401 0.15 0.99 0.96 0.35 0.26 0.52 

MobineNet-96 0.8954 0.0085 0.681 0 0.9 0 1 0 0.94 

ResNet-101 0.722 2.24E-06 0.9316 0.27 1 1 0.69 0.43 0.82 

ResNet-50[V2] 0.8954 0.1046 14.6937 0 0.9 0 1 0 0.94 

ResNet-101[V2] 0.187 0.0044 40.9428 0.11 0.99 0.99 0.09 0.2 0.17 

DenseNet-169 0.8954 0.1045 1.9226 0 0.9 0 1 0 0.94 

DenseNet-201 0.8954 1.00E-04 4.5094 0 0.9 0... 1 0 0.94 

          
(Table 3) contd… 

 



Leaf Image Classification with the Aid of Transfer Learning Current Chinese Computer Science, 2021, Vol. 1, No. 1    69 

Peach 

  Base Metrics Precision Recall F1-Score 

Models Accuracy* MSE* Loss* Healthy Infection Healthy Infection Healthy 
Infec-

tion 

Vgg-16 0.9906 9.74E-09 0.1262 0.99 0.99 0.94 1 0.96 0.99 

Vgg-19 0.9868 0.0131 0.1124 1 0.99 0.9 1 0.95 0.99 

ResNet-50 0.9868 0.0086 0.0285 0.91 1 1 0.98 0.95 0.99 

DenseNet-121 0.8365 0.1422 1.1554 0.45 1 1 0.81 0.62 0.9 

Xception  0.8327 0.167 10.2604 0 0.86 0 0.96 0 0.91 

MobileNet-224 0.7444 0.1793 0.5464 0.1 0.86 0.11 0.84 0.11 0.85 

MobineNet-96 0.8684 0.1308 0.7623 0 0.87 0 1 0 0.93 

ResNet-101 0.9737 0.0189 0.0584 1 0.97 0.8 1 0.89 0.99 

ResNet-50[V2] 0.8684 0.1316 30.9314 0 0.87 0 1 0 0.93 

ResNet-101[V2] 0.1316 0.8684 177.018 0.13 0 1 0 0.23 0 

DenseNet-169 0.8853 0.098 0.4764 0.91 0.88 0.14 1 0.25 0.94 

DenseNet-201 0.8684 0.131 3.881 0 0.87 0 1 0 0.93 

          

Pepper 

  Base Metrics Precision Recall F1-Score 

Models Accuracy* MSE* Loss* Healthy Infection Healthy Infection Healthy 
Infec-

tion 

Vgg-16 0.9758 0.0212 0.1095 0.98 0.97 0.98 0.98 0.98 0.97 

Vgg-19 0.9657 0.0289 0.1784 0.98 0.95 0.96 0.97 0.97 0.96 

ResNet-50 0.8222 0.1374 0.5132 0.77 1 1 0.56 0.87 0.72 

DenseNet-121 0.8242 0.1461 0.6859 0.8 0.87 0.93 0.67 0.86 0.76 

Xception  0.3939 0.5856 12.3771 0.48 0.34 0.32 0.5 0.38 0.4 

MobileNet-224 0.6081 0.2885 0.8742 0.6 1 0.61 0.52 0.61 0.41 

MobineNet-96 0.4727 0.3202 0.8696 0.7 0.43 0.19 0.88 0.3 0.58 

ResNet-101 0.8222 0.1512 0.6528 0.77 1 1 0.56 0.87 0.72 

ResNet-50[V2] 0.5838 0.4167 26.7995 0.59 0.3 0.98 0.01 0.74 0.03 

ResNet-101[V2] 0.5939 0.4061 34.8977 0.59 1 1 0 0.74 0.01 

DenseNet-169 0.7475 0.2036 0.997 0.74 0.76 0.88 0.55 0.8 0.64 

DenseNet-201 0.6263 0.3059 1.671 0.74 0.53 0.56 0.72 0.64 0.61 

          
(Table 3) contd… 
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Potato 

  Base Metrics Precision Recall F1-Score 

Models Accuracy* MSE* Loss* Healthy Infection Healthy Infection Healthy 
Infec-

tion 

Vgg-16 0.9884 1.21E-06 0.0647 0.91 0.99 0.94 0.99 0.92 0.99 

Vgg-19 0.9907 7.40E-07 0.0414 0.94 0.99 0.94 0.99 0.94 0.99 

ResNet-50 0.8863 0.0878 0.3105 0.4 1 1 0.88 0.57 0.93 

DenseNet-121 0.9258 0.0742 1.0387 0 0.93 0 1 0 0.96 

Xception  0.9258 0.0742 9.6483 0 0.93 0 1 0 0.96 

MobileNet-224 0.9258 0.0558 0.1972 0.5 0.94 0.28 0.98 0.36 0.96 

MobineNet-96 0.9258 0.0737 0.378 0 0.93 0 1 0 0.96 

ResNet-101 0.9258 5.95E-06 0.2388 0.5 1 0.97 0.92 0.66 0.96 

ResNet-50[V2] 0.9258 0.0742 15.4327 0 0.93 0 1 0 0.96 

ResNet-101[V2] 0.2622 0.7297 28.8968 0.09 0.99 0.97 0.21 0.16 0.34 

DenseNet-169 0.9258 0.0742 0.9729 0 0.93 0 1 0 0.96 

DenseNet-201 0.9258 0.0742 2.8591 0 0.93 0 1 0 0.96 

          

Strawberry 

  Base Metrics Precision Recall F1-Score 

Models Accuracy* MSE* Loss* Healthy Infection Healthy Infection Healthy 
Infec-

tion 

Vgg-16 1 7.23E-07 4.88E-05 1 1 1 1 1 1 

Vgg-19 1 7.18E-17 3.81E-10 1 1 1 1 1 1 

ResNet-50 1 1.99E-04 0.0022 1 1 1 1 1 1 

DenseNet-121 0.7125 0.2812 3.4411 1 0.71 0.07 1 0.13 0.83 

Xception  0.6901 0.3099 40.7192 0 0.69 0 1 0 0.82 

MobileNet-224 0.3514 0.4453 1.3857 0.3 0.63 0.8 0.15 0.43 0.24 

MobineNet-96 0.7891 0.1538 0.4771 0.94 0.77 0.34 0.99 0.5 0.87 

ResNet-101 1 9.58E-04 0.0086 1 1 1 1 1 1 

ResNet-50[V2] 0.6901 0.3094 32.0733 0 0.69 0 1 0 0.82 

ResNet-101[V2] 0.5431 0.4464 10.5017 0.38 0.8 0.75 0.45 0.51 0.58 

DenseNet-169 0.7348 0.2474 2.3549 0.94 0.72 0.15 1 0.27 0.84 

DenseNet-201 0.6869 0.3128 10.8117 0 0.69 0 1 0 0.81 

          
(Table 3) contd… 
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Tomato 

  Base Metrics Precision Recall F1-Score 

Models Accuracy* MSE* Loss* Healthy Infection Healthy Infection Healthy Infec-

tion 

Vgg-16 0.9939 0.0049 0.029 0.99 0.99 0.99 0.97 0.99 0.98 

Vgg-19 0.9672 0.0275 0.1569 0.73 1 0.99 0.97 0.84 0.98 

ResNet-50 0.9736 0.0216 0.0751 0.77 1 0.98 0.97 0.86 0.99 

DenseNet-121 0.9144 0.0856 2.5672 0 0.91 0 1 0 0.96 

Xception  0.9146 0.0854 7.9042 1 0.91 0 1 0.01 0.96 

MobileNet-224 0.2585 0.5943 2.286 0.09 0.94 0.86 0.2 0.17 0.33 

MobineNet-96 0.9135 0.0828 0.384 0 0.91 0 1 0 0.95 

ResNet-101 0.9584 0.0308 0.1103 0.68 1 0.97 0.96 0.8 0.98 

ResNet-50[V2] 0.914 0.0856 38.2829 0 0.91 0 1 0 0.96 

ResNet-101[V2] 0.9144 0.0856 31.296 0 0.91 0 1 0 0.96 

DenseNet-169 0.913 0.0846 0.9528 0.44 0.92 0.05 0.99 0.1 0.95 

DenseNet-201 0.8945 0.0956 0.6806 0.44 0.99 0.86 0.9 0.58 0.94 
[*-Represents Base metrics where they’re generated combining Infection and Healthy classes and for evaluation of all metrics above mentioned, we used the Keras library where 
TensorFlow runs at the backend]. 

AUC-ROC Curve: Receiver Operating characteristics 
(ROC) is a metric generally used for a classification task 
with varying thresholds. 

So, for this, TPR (true-positive-rate) and FPR (false-
positive-rate) are calculated and the area under the curve 
(AUC) is promoted by laying FPR on the x-axis and TPR on 
the other. This curve helps in determining the fragility of the 
model. 
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4. RESULTS AND DISCUSSION 

As mentioned in Table (3), the above-mentioned metrics 
for models are generated and tabulated in Table (2). Models 
with base metrics (mentioned with *) are evaluated as they 
are prominent and have dominance to that of others. Preci-
sion, recall, and F1-score are evaluated to determine esti-
mates of the models over various classes (Healthy & Infect-
ed). It can be observed that potato is the imbalanced class 
with a dominance of infection class (above 90% samples). In 
such scenarios, we have to consider the metric evaluated on 
an individual class to provide an optimal estimate for our 
constructed model. In potato, it is observed that various 
models are having null values for precision, recall, and f1-
score on a single class (i.e., healthy class). This says that the 
models do not have to sustain a plethora in imbalance and 
learning only through the samples containing higher class 
distribution(i.e., infection class). In this case, considering 
base metrics can lead to inappreciable estimations. Therefore, 

to alleviate such problems additional metrics are generated with 
class-wise performance. These metrics are to be carefully no-
ticed which shows variations as outlined above (Fig 3). 

While considering base metrics, accuracy and loss deter-
mine a model performance, and additionally, MSE (mean 
squared error) is added which shows the deviation from 
ground truth to that to the estimated one. As mentioned, we 
have admitted categorical cross-entropy as our loss function. 
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Where � represents no. of samples or instances for a 
class. � represents no of class labels. 

��� �represents true class label for specified class and ���is 
the estimated class label. 

5. NOTICED PITFALLS AND DRAWBACKS 

5.1. Depth of Network 

We presented the below visualizations by considering the 
image (Apple black-rot infection class) shown in Fig. (1) 
which is of size 224 x 224. This image is passed as input into 
various models provided in the above section and generated 
visualizations of the activation maps at three different phases 
of the network. In the first phase, we have considered a suc-
cession to the input layer; next, the second phase consists of 
the central (middle) layer, and the third phase consists of 
rearmost layer visualizations. 
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Fig. (3). Illustrations of results obtained from various models. (A higher resolution / colour version of this figure is available in the electronic 
copy of the article). 
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Fig. (4). Input Image for Experimentation. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 

 

Vgg16: 

 
Layer-2 

 
Layer-8 

 
Layer-16 

Fig. (5). VGG16 illustrations of various layers for Apple. (A higher resolution / colour version of this figure is available in the electronic 
copy of the article). 

 

Vgg19: 

 
Layer-2 

 
Layer-10 

 
Layer-19 

Fig. (6). VGG19 illustrations of various layers for Apple. (A higher resolution / colour version of this figure is available in the electronic 
copy of the article). 

The above representation describes the feature extraction 
mechanism in convolution neural networks. Each image in a 
specified layer describes the information shared by each ker-
nel (also, filter) by convolving over the image. We depicted 
the internal mechanism of each convolutional layer feature 
extraction for respective models. We observed that the VGG 
model has the efficacy to extract insightful features due to 
the small receptive fields in the model. Thus, feature extrac-
tion is done precisely. In the rearmost layer, visualizations of 
the infected portion in the leaf, the image is identified by 
both the VGG models (VGG16 & VGG19). Therefore, the 

performance of the VGG model was on par with that of the 
remaining models (Figs 4-6). 

As intensifying the depth of layers, learning of the net-
work becomes sophisticated. ResNet and DenseNet models 
consist of too many skip connections; these features learned 
in the previous layers will be the same as in the next layers. 
Therefore, the rearmost layer feature extraction is almost the 
same as the input layer (as seen in Figs. 7 and 8). As the in-
fected portion was not identified properly, these models did 
not yield greater performance as compared to that of the 
VGG model. 
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Resnet50: 

 
Layer-2 

 
Layer-25 

 
Layer-50 

Fig. (7). Resnet50 illustrations of various layers for Apple. (A higher resolution / colour version of this figure is available in the electronic 
copy of the article). 

 

Densenet121: 

 
Layer-2 

 
Layer-61 

 
Layer-120 

Fig. (8). Densenet121 illustrations of various layers for Apple. (A higher resolution / colour version of this figure is available in the electronic 
copy of the article). 

5.2. Low Sample Size 

With a low sample space, most of the deep learning mod-
els cannot make inferences as the pattern recognition capa-
bility for them is not nurtured during training. Therefore, 
with a few samples, we cannot decide with convincing re-
sults. 

5.3. Data Imbalance 

Generally, in many of the cases in deep learning, we ob-
serve class imbalance in data which means one or the other 
class is having a majority amount of data and others do not. 
This inappropriate distribution of data amongst the classes in 
a model makes a model learn better for the class having a 
higher number of samples which may cause overfitting in 
data. However, we observed that VGG Models were able to 
give efficient and insightful results even for an imbalanced 
class. During the prosecution, it was observed that Tomato 
and Potato appeared to have a high imbalance of 8.8% and 
7.1% in the healthy class, respectively. The results generated 
seemed to have high precision and F1-score only for Infec-
tion class as they contained large data for some models. 
However, VGG models were elegant and overcame this issue 
with that of other mentioned models.  

CONCLUSION 

In this paper, we analyzed and assessed (Table 2) the 
state-of-the-art models proposed for the complex machine 
vision problems. As the models are pre-trained with opti-
mum weights, a design-oriented approach is developed with 
various leaf-images and classified them into infection and 
healthy class for each type of leaf individually. With this 
analysis, it is concluded that VGG models outperform with 
various mentioned models (Table 1) and give on par out-
comes. As mentioned, these VGG models (VGG16 & 
VGG19) are used for feature extraction mechanisms; fur-
thermore, a set of dense layers is added to train them accord-
ingly. We have visually seen the performance of VGG mod-
els and their elegant architecture that is not only able to ex-
tract precise features but also overcome various pitfalls. 

The performance is evaluated for various kinds of leaf 
images. The accuracy scores are above 97.5% for VGG16 
and 96.72% for VGG19. AUC-ROC [69, 70] curves are de-
picted to illustrate its influence in determining an accurate 
classification whereas VGG16 and VGG19 have at least 
96.6% and 95% AUC, respectively. These VGG Models 
were resilient to a lower sample size and did not show drasti-
cally varying performance with data imbalance. In the future, 
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classifying each typical infection in each crop (leaf) would 
be taken as a challenge to design a reliable model. 
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